Spanning cycles in regular matroids without small cocircuits

نویسندگان

  • Ping Li
  • Hong-Jian Lai
  • Yehong Shao
  • Mingquan Zhan
چکیده

A cycle of a matroid is a disjoint union of circuits. A cycle C of a matroidM is spanning if the rank of C equals the rank ofM . Settling an open problem of Bauer in 1985, Catlin in [P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44] showed that if G is a 2-connected graph on n > 16 vertices, and if δ(G) > n 5−1, thenGhas a spanning cycle. Catlin also showed that the lower bound of the minimum degree in this result is best possible. In this paper, we prove that for a connected simple regular matroid M , if for any cocircuit D, |D| ≥ max  r(M)−4 5 , 6  , thenM has a spanning cycle. © 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Matroids with Graphic Cocircuits

In this paper we examine the effect of removing cocircuits from regular matroids and we focus on the case in which such a removal always results in a graphic matroid. The first main result, given in section 3, is that a regular matroid with graphic cocircuits is signed-graphic if and only if it does not contain two specific minors. This provides a useful connection between graphic, regular and ...

متن کامل

Spanning cycles in regular matroids without M*(K5) minors

Catlin and Jaeger proved that the cycle matroid of a 4-edge-connected graph has a spanning cycle. This result can not be generalized to regular matroids as there exist infinitely many connected cographic matroids, each of which contains a M(K5) minor and has arbitrarily large cogirth, that do not have spanning cycles. In this paper, we proved that if a connected regular matroid without aM(K5)-m...

متن کامل

Circuits Through Cocircuits In A Graph With Extensions To Matroids

We show that for any k-connected graph having cocircumference c∗, there is a cycle which intersects every cocycle of size c∗ − k+2 or greater. We use this to show that in a 2connected graph, there is a family of at most c∗ cycles for which each edge of the graph belongs to at least two cycles in the family. This settles a question raised by Oxley. A certain result known for cycles and cocycles ...

متن کامل

The Erdös-Pósa property for matroid circuits

The number of disjoint cocircuits in a matroid is bounded by its rank. There are, however, matroids with arbitrarily large rank that do not contain two disjoint cocircuits; consider, for example, M(Kn) and Un,2n. Also the bicircular matroids B(Kn) have arbitrarily large rank and have no 3 disjoint cocircuits. We prove that for each k and n there exists a constant c such that, if M is a matroid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012